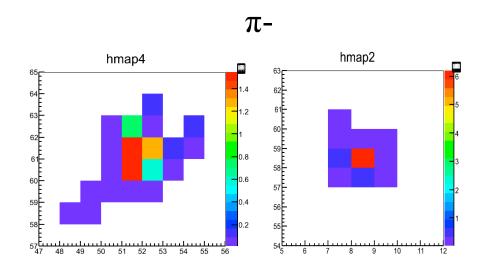
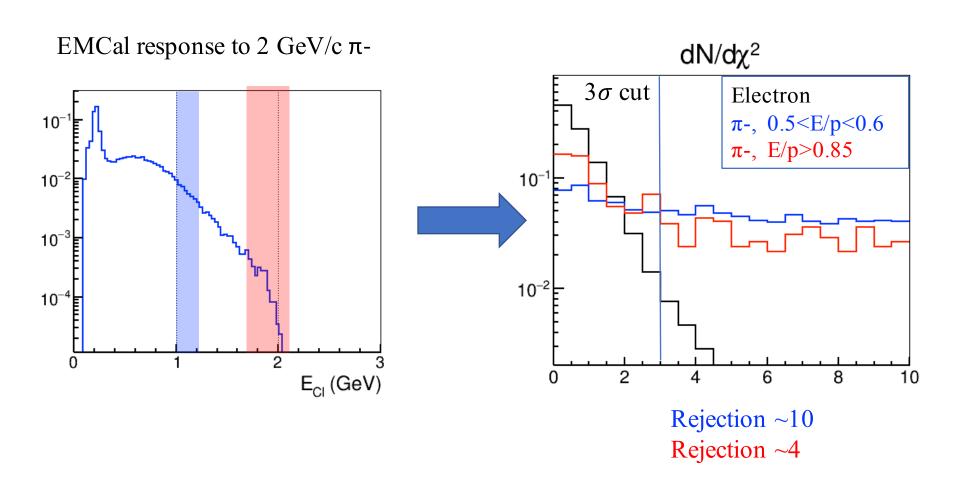

EMCal for eID: Shower Profile


A.Bazilevsky (BNL) June, 2020

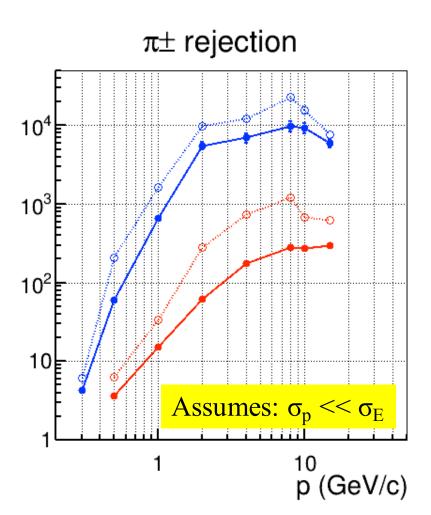
Evaluating shower profile

Well defined shower shape

$$\chi^2 = \sum \frac{(E_i^{meas} - E_i^{pred})^2}{\sigma_i^2}$$


Broader shape

Very similar to electron shower shape


 E_i^{meas} – measured energy in a tower $E_i^{pred} = E(x_i-x_{CG}, y_i-y_{CG})$ – predicted energy in a tower from electron shower parameterization

 $\sigma_i = \sigma(x_i - x_{CG}, y_i - y_{CG})$ – fluctuations in a tower from electron shower parameterization

Profile χ^2 : electron vs π -

π ± rejection: E/p and profile

Solid: E/p, ε_e =95%

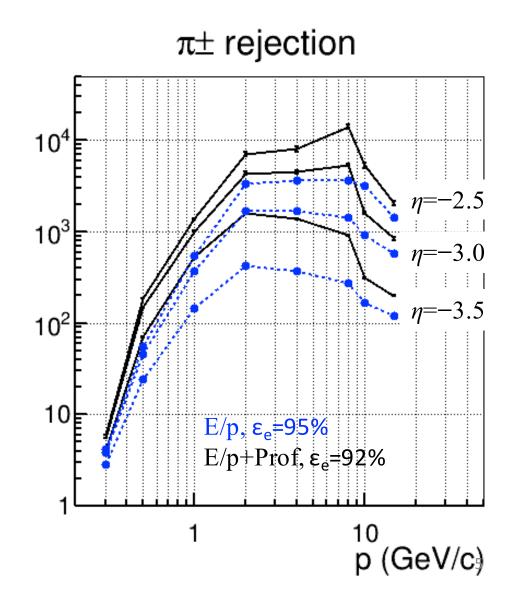
Dashed: E/p+Prof, $\varepsilon_e=92\%$

Ideal case:

- No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- > Gaussian response to electron

	PbWO ₄ Crystal (GEANT)	W/SciFi (sPHENIX, GEANT)	PbSc (PHENIX, data)
Depth, X ₀	20	~20	18
$\frac{\sigma_E}{E}$	$\frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{13\%}{\sqrt{E}}$ \oplus 3%	$\frac{8\%}{\sqrt{E}}$ \oplus 2%
Depth, λ_1	0.87	~0.83	0.85
e/h	>2		<1.3

After E/p cut expect additional rejection by a factor of 2 (3-4) in PbWO4 (W/SciFi)

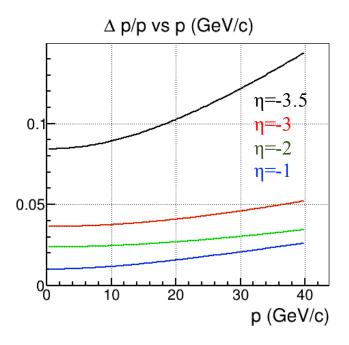

Including momentum resolution

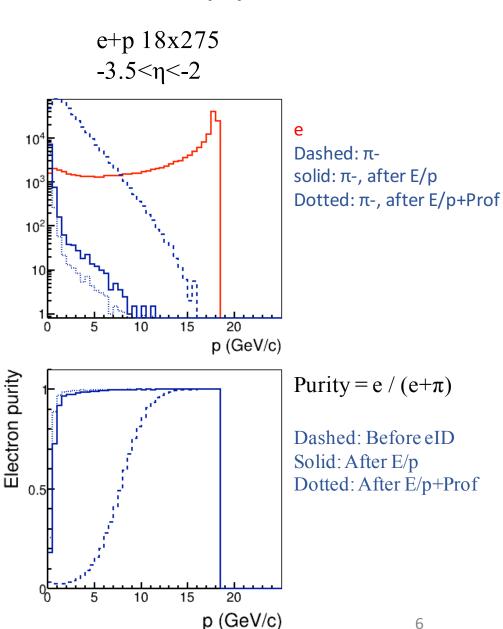
PbWO₄ Crystal (GEANT)

$$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$$

BaBar-based Tracking model: TPC (barrel), Si +GEM (forw) (Fun4All-GEANT4 simulation)

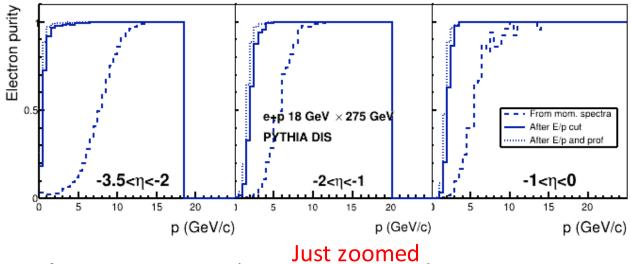
 Δ p/p vs p (GeV/c) η =-3.5 η =-2 η =-1 0.05 ρ (GeV/c) η =-1 ρ (GeV/c)

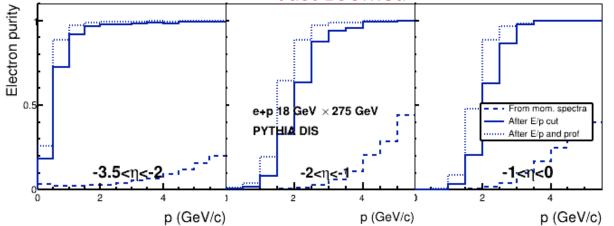



DIS: Hadronic Background Suppression

PbWO₄ Crystal (GEANT)

$$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$$


BaBar-based Tracking model: TPC (barrel), Si +GEM (forw) (Fun4All-GEANT4 simulation)

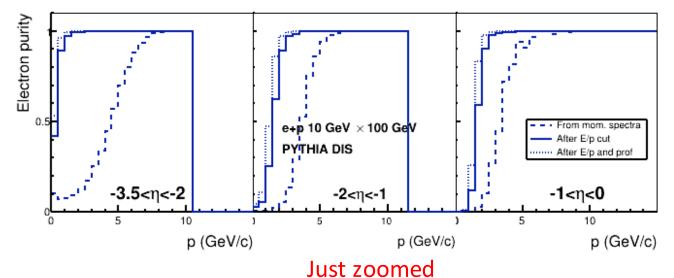


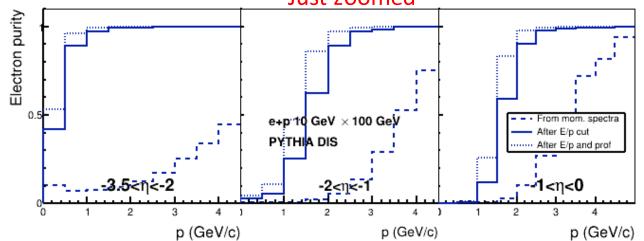
DIS scattered electron purity

-3.5<η<-2	-2<η<-1	-1<η<1	
$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{\sigma_E}{E} = \frac{7\%}{\sqrt{E}} \oplus 2\%$	$\frac{\sigma_E}{E} = \frac{12\%}{\sqrt{E}} \oplus 2\%$	

Ideal case:

- > No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- > Gaussian response to electron


Purity = e / (e+h)


18 GeV × 275 GeV:

Clean eID at >2.5 GeV/c (purity > 96%)

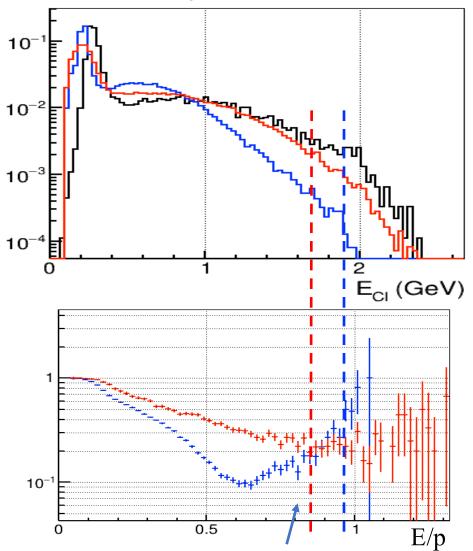
DIS scattered electron purity

-3.5<η<-2	-2<η<-1	-1<η<1
$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{\sigma_E}{E} = \frac{7\%}{\sqrt{E}} \oplus 2\%$	$\frac{\sigma_E}{E} = \frac{12\%}{\sqrt{E}} \oplus 2\%$

Ideal case:

- ➤ No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- > Gaussian response to electron

Purity = e/(e+h)


10 GeV × 100 GeV:

Clean eID at >2GeV/c (purity > 96%)

Backup

Profile χ^2 vs E/p

EMCal response to 2 GeV/c π -

Ideal case:

- No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- > Gaussian response to electron

	PbWO ₄	W/SciFi	PbSc
	Crystal (GEANT)	(sPHENIX, GEANT)	(PHENIX, data)
Depth, X ₀	20	~20	18
$\frac{\sigma_E}{E}$	$\frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{13\%}{\sqrt{E}}$ \oplus 3%	$\frac{8\%}{\sqrt{E}}$ \oplus 2%
Depth, $\lambda_{\rm l}$	0.87	~0.83	0.85
e/h	>2		<1.3

After E/p cut expect additional rejection by factor of 2 (4) in PbWO4 (W/SciFi)

E/p > 1 - 1.6 · $\sigma_{\rm EMC}$ to keep $\varepsilon_{\rm e}$ =95%